A weighted norm inequality for Vilenkin-Fourier series

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NORM INEQUALITY FOR CHEBYSHEV CENTRES

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...

متن کامل

A Note on the Fourier Coefficients and Partial Sums of Vilenkin-fourier Series

The aim of this paper is to investigate Paley type and HardyLittlewood type inequalities and strong convergence theorem of partial sums of Vilenkin-Fourier series. Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Let m := (m0,m1, . . .) denote a sequence of the positive numbers, not less than 2. Denote by Zmk := {0, 1, . . . ,mk − 1} the additive group of integers modulomk. Define...

متن کامل

An uncertainty inequality for Fourier-Dunkl series

An uncertainty inequality for the Fourier–Dunkl series, introduced by the authors in [Ó. Ciaurri and J. L. Varona, A Whittaker-Shannon-Kotel’nikov sampling theorem related to the Dunkl transform, Proc. Amer. Math. Soc. 135 (2007), 2939–2947], is proved. This result is an extension of the classical uncertainty inequality for the Fourier series.

متن کامل

a norm inequality for chebyshev centres

in this paper, we study the chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. in particular, we prove that if t is a remotal subset of an inner product space h, and f is a star-shaped set at a relative chebyshev centre c of t with respect to f, then llx - qt (x)1i2 2 ilx-cll2 + ilc-qt (c) 112 x e f, where qt : f + t is any choice function s...

متن کامل

Weighted and Mixed Norm Estimates for Oscillatory Fourier

In this working paper we suggest some lines of investigation regarding oscillatory Fourier transforms with homogeneous phase. A special case is the solution to the time-dependent free Schrr odinger equation. We consider time-global range-weighted L 2 ? R n+1-estimates. The main tools are Parseval's formula for Fourier transforms on R, orthogonality arguments arising from decomposing L 2 (R n) u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0367547-3